Constrained molecular dynamics: Difference between revisions
| Line 74: | Line 74: | ||
<ref name="Darve02">[http://dx.doi.org/10.1080/08927020211975 E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113 (2002).]</ref> | <ref name="Darve02">[http://dx.doi.org/10.1080/08927020211975 E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113 (2002).]</ref> | ||
<ref name="Fleurat05">[http://dx.doi.org/10.1063/1.1948367 P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).]</ref> | <ref name="Fleurat05">[http://dx.doi.org/10.1063/1.1948367 P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).]</ref> | ||
<ref name="Ryckaert77">[http://dx.doi.org/10.1016/0021-9991(77)90098-5 J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).]</ref> | <ref name="Ryckaert77">[http://dx.doi.org/10.1016/0021-9991(77)90098-5 J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).]</ref> | ||
</references> | </references> | ||
Revision as of 15:52, 13 March 2019
In general, constrained molecular dynamics generates biased statistical averages. It can be shown that the correct average for a quantity [math]\displaystyle{ a(\xi) }[/math] can be obtained using the formula:
- [math]\displaystyle{ a(\xi)=\frac{\langle |\mathbf{Z}|^{-1/2} a(\xi^*) \rangle_{\xi^*}}{\langle |\mathbf{Z}|^{-1/2}\rangle_{\xi^*}}, }[/math]
where [math]\displaystyle{ \langle ... \rangle_{\xi^*} }[/math] stands for the statistical average of the quantity enclosed in angular parentheses computed for a constrained ensemble and [math]\displaystyle{ Z }[/math] is a mass metric tensor defined as:
- [math]\displaystyle{ Z_{\alpha,\beta}={\sum}_{i=1}^{3N} m_i^{-1} \nabla_i \xi_\alpha \cdot \nabla_i \xi_\beta, \, \alpha=1,...,r, \, \beta=1,...,r, }[/math]
It can be shown that the free energy gradient can be computed using the equation:[1][2][3][4]
- [math]\displaystyle{ \Bigl(\frac{\partial A}{\partial \xi_k}\Bigr)_{\xi^*}=\frac{1}{\langle|Z|^{-1/2}\rangle_{\xi^*}}\langle |Z|^{-1/2} [\lambda_k +\frac{k_B T}{2 |Z|} \sum_{j=1}^{r}(Z^{-1})_{kj} \sum_{i=1}^{3N} m_i^{-1}\nabla_i \xi_j \cdot \nabla_i |Z|]\rangle_{\xi^*}, }[/math]
where [math]\displaystyle{ \lambda_{\xi_k} }[/math] is the Lagrange multiplier associated with the parameter [math]\displaystyle{ {\xi_k} }[/math] used in the SHAKE algorithm.[5]
The free-energy difference between states (1) and (2) can be computed by integrating the free-energy gradients over a connecting path:
- [math]\displaystyle{ {\Delta}A_{1 \rightarrow 2} = \int_{{\xi(1)}}^{{\xi(2)}}\Bigl( \frac{\partial {A}} {\partial \xi} \Bigr)_{\xi^*} \cdot d{\xi}. }[/math]
Note that as the free-energy is a state quantity, the choice of path connecting (1) with (2) is irrelevant.
Constrained molecular dynamics is performed using the SHAKE algorithm.[5]. In this algorithm, the Lagrangian for the system [math]\displaystyle{ \mathcal{L} }[/math] is extended as follows:
- [math]\displaystyle{ \mathcal{L}^*(\mathbf{q,\dot{q}}) = \mathcal{L}(\mathbf{q,\dot{q}}) + \sum_{i=1}^{r} \lambda_i \sigma_i(q), }[/math]
where the summation is over r geometric constraints, [math]\displaystyle{ \mathcal{L}^* }[/math] is the Lagrangian for the extended system, and λi is a Lagrange multiplier associated with a geometric constraint σi:
- [math]\displaystyle{ \sigma_i(q) = \xi_i({q})-\xi_i \; }[/math]
with ξi(q) being a geometric parameter and ξi is the value of ξi(q) fixed during the simulation.
In the SHAKE algorithm, the Lagrange multipliers λi are determined in the iterative procedure:
- Perform a standard MD step (leap-frog algorithm):
- [math]\displaystyle{ v^{t+{\Delta}t/2}_i = v^{t-{\Delta}t/2}_i + \frac{a^{t}_i}{m_i} {\Delta}t }[/math]
- [math]\displaystyle{ q^{t+{\Delta}t}_i = q^{t}_i + v^{t+{\Delta}t/2}_i{\Delta}t }[/math]
- Use the new positions q(t+Δt) to compute Lagrange multipliers for all constraints:
- [math]\displaystyle{ {\lambda}_k= \frac{1}{{\Delta}t^2} \frac{\sigma_k(q^{t+{\Delta}t})}{\sum_{i=1}^N m_i^{-1} \bigtriangledown_i{\sigma}_k(q^{t}) \bigtriangledown_i{\sigma}_k(q^{t+{\Delta}t})} }[/math]
- Update the velocities and positions by adding a contribution due to restoring forces (proportional to λk):
- [math]\displaystyle{ v^{t+{\Delta}t/2}_i = v^{t-{\Delta}t/2}_i + \left( a^{t}_i-\sum_k \frac{{\lambda}_k}{m_i} \bigtriangledown_i{\sigma}_k(q^{t}) \right ) {\Delta}t }[/math]
- [math]\displaystyle{ q^{t+{\Delta}t}_i = q^{t}_i + v^{t+{\Delta}t/2}_i{\Delta}t }[/math]
- repeat steps 2-4 until either |σi(q)| are smaller than a predefined tolerance (determined by SHAKETOL), or the number of iterations exceeds SHAKEMAXITER.
Anderson thermostat
- For a constrained molecular dynamics run with Andersen thermostat, one has to:
- Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
- Set MDALGO=1, and choose an appropriate setting for ANDERSEN_PROB
- Define geometric constraints in the ICONST-file, and set the STATUS parameter for the constrained coordinates to 0
- When the free-energy gradient is to be computed, set LBLUEOUT=.TRUE.
References
- ↑ E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, Chem. Phys. Lett. 156, 472 (1989).
- ↑ W. K. Den Otter and W. J. Briels, Mol. Phys. 98, 773 (2000).
- ↑ E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113 (2002).
- ↑ P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).
- ↑ a b J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).