Thermodynamic integration with harmonic reference: Difference between revisions
No edit summary |
No edit summary |
||
| Line 29: | Line 29: | ||
# compute <math>\omega_i</math> in vibrational analysis | # compute <math>\omega_i</math> in vibrational analysis | ||
# use the data obtained in the point 2 to determine <math>\underline{\mathbf{H}}^\mathbf{x}</math> that defines the harmonic forcefield | # use the data obtained in the point 2 to determine <math>\underline{\mathbf{H}}^\mathbf{x}</math> that defines the harmonic forcefield | ||
# perform NVT MD simulations for several values of <math>\lambda \in \langle0,1\rangle</math> and | # perform NVT MD simulations for several values of <math>\lambda \in \langle0,1\rangle</math> and determine <math>\langle V_1 -V_{0,\mathbf{x}} \rangle</math> | ||
# | # integrate <math>\langle V_1 -V_{0,\mathbf{x}} \rangle</math> over the <math>\lambda </math> grid and compute <math>\Delta A_{0,\mathbf{x}\rightarrow 1}</math> | ||
Revision as of 08:11, 1 November 2023
The Helmholtz free energy ([math]\displaystyle{ A }[/math]) of a fully interacting system (1) can be expressed in terms of that of system harmonic in Cartesian coordinates (0,[math]\displaystyle{ \mathbf{x} }[/math]) as follows
- [math]\displaystyle{ A_{1} = A_{0,\mathbf{x}} + \Delta A_{0,\mathbf{x}\rightarrow 1} }[/math]
where [math]\displaystyle{ \Delta A_{0,\mathbf{x}\rightarrow 1} }[/math] is anharmonic free energy. The latter term can be determined by means of thermodynamic integration (TI)
- [math]\displaystyle{ \Delta A_{0,\mathbf{x}\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_{0,\mathbf{x}} \rangle_\lambda }[/math]
with [math]\displaystyle{ V_i }[/math] being the potential energy of system [math]\displaystyle{ i }[/math], [math]\displaystyle{ \lambda }[/math] is a coupling constant and [math]\displaystyle{ \langle\cdots\rangle_\lambda }[/math] is the NVT ensemble average of the system driven by the Hamiltonian
- [math]\displaystyle{ \mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_{0,\mathbf{x}} }[/math]
Free energy of harmonic reference system within the quasi-classical theory writes
- [math]\displaystyle{ A_{0,\mathbf{x}} = A_\mathrm{el}(\mathbf{x}_0) - k_\mathrm{B} T \sum_{i = 1}^{N_\mathrm{vib}} \ln \frac{k_\mathrm{B} T}{\hbar \omega_i} }[/math]
with the electronic free energy [math]\displaystyle{ A_\mathrm{el}(\mathbf{x}_0) }[/math] for the configuration corresponding to the potential energy minimum with the atomic position vector [math]\displaystyle{ \mathbf{x}_0 }[/math], the number of vibrational degrees of freedom [math]\displaystyle{ N_\mathrm{vib} }[/math], and the angular frequency [math]\displaystyle{ \omega_i }[/math] of vibrational mode [math]\displaystyle{ i }[/math] obtained using the Hesse matrix [math]\displaystyle{ \underline{\mathbf{H}}^\mathbf{x} }[/math]. Finally, the harmonic potential energy is expressed as
- [math]\displaystyle{ V_{0,\mathbf{x}}(\mathbf{x}) = V_{0,\mathbf{x}}(\mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \underline{\mathbf{H}}^\mathbf{x} (\mathbf{x} - \mathbf{x}_0) }[/math]
Thus, a conventional TI calculation consists of the following steps:
- determine [math]\displaystyle{ \mathbf{x}_0 }[/math] and [math]\displaystyle{ V_{0,\mathbf{x}}(\mathbf{x}_0) }[/math] in structural relaxation
- compute [math]\displaystyle{ \omega_i }[/math] in vibrational analysis
- use the data obtained in the point 2 to determine [math]\displaystyle{ \underline{\mathbf{H}}^\mathbf{x} }[/math] that defines the harmonic forcefield
- perform NVT MD simulations for several values of [math]\displaystyle{ \lambda \in \langle0,1\rangle }[/math] and determine [math]\displaystyle{ \langle V_1 -V_{0,\mathbf{x}} \rangle }[/math]
- integrate [math]\displaystyle{ \langle V_1 -V_{0,\mathbf{x}} \rangle }[/math] over the [math]\displaystyle{ \lambda }[/math] grid and compute [math]\displaystyle{ \Delta A_{0,\mathbf{x}\rightarrow 1} }[/math]