Thermodynamic integration with harmonic reference: Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
A_{1} = A_{0} + \Delta A_{0\rightarrow 1} | A_{1} = A_{0} + \Delta A_{0\rightarrow 1} | ||
</math> | </math> | ||
where <math>\Delta A_{0\rightarrow 1}</math> is anharmonic free energy. The latter term can be determined by means of thermodynamic integration | where <math>\Delta A_{0\rightarrow 1}</math> is anharmonic free energy. The latter term can be determined by means of thermodynamic integration (TI) | ||
:<math> | :<math> | ||
\Delta A_{0\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_0 \rangle_\lambda | \Delta A_{0\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_0 \rangle_\lambda | ||
| Line 9: | Line 9: | ||
with <math>V_i</math> being the potential energy of system <math>i</math>, <math>\lambda</math> is a coupling constant and <math>\langle\cdots\rangle_\lambda</math> is the NVT ensemble average of the system driven by the Hamiltonian | with <math>V_i</math> being the potential energy of system <math>i</math>, <math>\lambda</math> is a coupling constant and <math>\langle\cdots\rangle_\lambda</math> is the NVT ensemble average of the system driven by the Hamiltonian | ||
:<math> | :<math> | ||
\mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_0 | \mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_0 | ||
</math> | </math> | ||
Free energy of harmonic reference system within the quasi-classical theory writes | |||
:<math> | |||
A_{0,\vct{x}} = A_\mathrm{el}(\vct{x}_0) - k_\mathrm{B} T \sum_{i = 1}^{N_\mathrm{vib}} \ln \frac{k_\mathrm{B} T}{\hbar \omega_i} | |||
</math> | |||
with the electronic free energy <math>A_\mathrm{el}(\vct{x}_0)</math> for the | |||
configuration corresponding to the potential energy minimum with the | |||
atomic position vector <math>\vct{x}_0</math>, | |||
the number of vibrational degrees of freedom <math>N_\mathrm{vib}</math>, and the angular frequency $\omega_i$ of vibrational mode <math>i</math>. | |||
Revision as of 07:51, 1 November 2023
The Helmholtz free energy ([math]\displaystyle{ A }[/math]) of a fully interacting system (1) can be expressed in terms of that of harmonic system (0) as follows
- [math]\displaystyle{ A_{1} = A_{0} + \Delta A_{0\rightarrow 1} }[/math]
where [math]\displaystyle{ \Delta A_{0\rightarrow 1} }[/math] is anharmonic free energy. The latter term can be determined by means of thermodynamic integration (TI)
- [math]\displaystyle{ \Delta A_{0\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_0 \rangle_\lambda }[/math]
with [math]\displaystyle{ V_i }[/math] being the potential energy of system [math]\displaystyle{ i }[/math], [math]\displaystyle{ \lambda }[/math] is a coupling constant and [math]\displaystyle{ \langle\cdots\rangle_\lambda }[/math] is the NVT ensemble average of the system driven by the Hamiltonian
- [math]\displaystyle{ \mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_0 }[/math]
Free energy of harmonic reference system within the quasi-classical theory writes
- [math]\displaystyle{ A_{0,\vct{x}} = A_\mathrm{el}(\vct{x}_0) - k_\mathrm{B} T \sum_{i = 1}^{N_\mathrm{vib}} \ln \frac{k_\mathrm{B} T}{\hbar \omega_i} }[/math]
with the electronic free energy [math]\displaystyle{ A_\mathrm{el}(\vct{x}_0) }[/math] for the configuration corresponding to the potential energy minimum with the atomic position vector [math]\displaystyle{ \vct{x}_0 }[/math], the number of vibrational degrees of freedom [math]\displaystyle{ N_\mathrm{vib} }[/math], and the angular frequency $\omega_i$ of vibrational mode [math]\displaystyle{ i }[/math].