Thermodynamic integration with harmonic reference: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 2: Line 2:
:<math>
:<math>
A_{1} = A_{0} + \Delta A_{0\rightarrow 1}
A_{1} = A_{0} + \Delta A_{0\rightarrow 1}
</math>  
</math>  
where <math>\Delta A_{0\rightarrow 1}</math> is anharmonic free energy. The latter term
where <math>\Delta A_{0\rightarrow 1}</math> is anharmonic free energy. The latter term can be determined by means of thermodynamic integration
:<math>
\Delta A_{0\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_0  \rangle_\lambda
</math>
with <math>V_i</math> being the potential energy of system <math>i</math>, <math>\lambda</math> is a coupling constant and

Revision as of 07:35, 1 November 2023

The Helmholtz free energy ([math]\displaystyle{ A }[/math]) of a fully interacting system (1) can be expressed in terms of that of harmonic system (0) as follows

[math]\displaystyle{ A_{1} = A_{0} + \Delta A_{0\rightarrow 1} }[/math]

where [math]\displaystyle{ \Delta A_{0\rightarrow 1} }[/math] is anharmonic free energy. The latter term can be determined by means of thermodynamic integration

[math]\displaystyle{ \Delta A_{0\rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_0 \rangle_\lambda }[/math]

with [math]\displaystyle{ V_i }[/math] being the potential energy of system [math]\displaystyle{ i }[/math], [math]\displaystyle{ \lambda }[/math] is a coupling constant and