ML SIGW0: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 3: Line 3:
{{DEF|ML_SIGW0|1E-7|for {{TAG|ML_MODE}} {{=}} REFIT|1.0|else}}
{{DEF|ML_SIGW0|1E-7|for {{TAG|ML_MODE}} {{=}} REFIT|1.0|else}}


Description: This flag sets the initial reversed and squared precision parameter <math>\frac{1}{\sigma_{\mathrm{w}}^{2}}</math> in the machine learning force field method.  
Description: This flag sets the precision parameter <math>s_{\mathrm{w}}</math> for the fitting in the machine learning force field method.  
----
----


For details about the optimization of this regularization parameter see [[Machine learning force field: Theory#Bayesian error estimation|this section]].
If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition ({{TAG|ML_IALGO_LINREG}}=4), the best is to control the regularization via this parameter and keep the noise paramter <math>s_{\mathrm{v}}</math> (see {{TAG|ML_SIGV0}}) constant at 1.


For the theory of this regularization parameter see [[Machine learning force field: Theory#Regression|this section]].
== Related tags and articles ==
== Related tags and articles ==
{{TAG|ML_LMLFF}}, {{TAG|ML_MODE}}, {{TAG|ML_IREG}}, {{TAG|ML_SIGV0}}
{{TAG|ML_LMLFF}}, {{TAG|ML_MODE}}, {{TAG|ML_IREG}}, {{TAG|ML_SIGV0}}, {{TAG|ML_IALGO_LINREG}}


{{sc|ML_SIGW0|Examples|Examples that use this tag}}
{{sc|ML_SIGW0|Examples|Examples that use this tag}}

Revision as of 15:46, 3 July 2023

ML_SIGW0 = [real]
Default: none 

Default: ML_SIGW0 = 1E-7 for ML_MODE = REFIT
= 1.0 else

Description: This flag sets the precision parameter [math]\displaystyle{ s_{\mathrm{w}} }[/math] for the fitting in the machine learning force field method.


If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition (ML_IALGO_LINREG=4), the best is to control the regularization via this parameter and keep the noise paramter [math]\displaystyle{ s_{\mathrm{v}} }[/math] (see ML_SIGV0) constant at 1.

For the theory of this regularization parameter see this section.

Related tags and articles

ML_LMLFF, ML_MODE, ML_IREG, ML_SIGV0, ML_IALGO_LINREG

Examples that use this tag