DFT-D2: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 17: Line 17:
whereby the global scaling parameter <math>s_6</math> has been optimized for several different DFT functionals such as PBE (<math>s_6=0.75</math>), BLYP (<math>s_6=1.2</math>) and B3LYP (<math>s_6=1.05</math>). The parameter <math>s_R</math> is usually fixed at 1.00. The DFT-D2 method can be activated by setting {{TAG|IVDW}}=''1|10'' or by specifying {{TAG|LVDW}}=''.TRUE.'' (this parameter is obsolete as of VASP.5.3.3). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the default values are listed):
whereby the global scaling parameter <math>s_6</math> has been optimized for several different DFT functionals such as PBE (<math>s_6=0.75</math>), BLYP (<math>s_6=1.2</math>) and B3LYP (<math>s_6=1.05</math>). The parameter <math>s_R</math> is usually fixed at 1.00. The DFT-D2 method can be activated by setting {{TAG|IVDW}}=''1|10'' or by specifying {{TAG|LVDW}}=''.TRUE.'' (this parameter is obsolete as of VASP.5.3.3). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the default values are listed):


\begin{tabular}{rll}
*{{TAG|VDW_RADIUS}}=50.0 cutoff radius (in <math>\AA</math>) for pair interactions
{\tt VDW\_RADIUS} &= 50.0     & cutoff radius ({\AA}) for pair interactions\\
*{{TAG|VDW_S6}}=0.75 global scaling factor <math>s_6</math> (available in VASP.5.3.4 and later)
{\tt VDW\_S6} &= 0.75     & global scaling factor $s_6$\\
*{{TAG|VDW_SR}}=1.00 scaling factor <math>s_R</math> (available in VASP.5.3.4 and later)
                & & (available in VASP.5.3.4 and later)\\
*{{TAG|VDW_SCALING}}=0.75 the same as {{TAG|VDW_S6}} (obsolete as of VASP.5.3.4)
{\tt VDW\_SR} &= 1.00     & scaling factor $s_R$\\
*{{TAG|VDW_D}}=20.0 damping parameter <math>d</math>
& & (available in VASP.5.3.4 and later)\\
*{{TAG|VDW_C6}}=[real array] <math>C_6</math> parameters (<math>\mathrm{Jnm}^{6}\mathrm{mol}^{-1}</math>) for each species defined in the {{TAG|POSCAR}} file
{\tt VDW\_SCALING} & =0.75 & the same as {\tt VDW\_S6}\\
*{{TAG|VDW_R0}}=[real array] <math>R_0</math> parameters (<math>\AA</math>) for each species defined in the {{TAG|POSCAR}} file
  & & (obsolete as of VASP.5.3.4)\\
*{{TAG|LVDW_EWALD}}=''.FALSE.'' decides whter lattice summation in <math>E_{disp}</math> expression by means of Ewald's summation is computed (available in VASP.5.3.4 and later)
{\tt VDW\_D}       &= 20.0     & damping parameter $d$\\
 
{\tt VDW\_C6}     &= [real array] & $C_6$ parameters ($Jnm^6mol^{-1}$) for each species\\
The performance of PBE-D2 method in optimization of various crystalline systems has been tested systematically in reference <ref name="bucko"/>.\\
            & &  defined in POSCAR\\
 
{\tt VDW\_R0}     &= [real array] & $R_0$ parameters ({\AA}) for each species \\
== noindent IMPORTANT NOTES ==
          & & defined in POSCAR\\
 
{\tt LVDW\_EWALD}     &= .FALSE.$|$.TRUE. & compute lattice summation in $E_{disp}$ expression\\
*The defaults for {{TAG|VDW_C6}} and {{TAG|VDW_R0}} are defined only for elements in the first five rows of periodic table (i.e. H-Xe). If the system contains other elements the user must define these parameters in {{TAG|INCAR}}.
& & by means of Ewald's summation - no$|$yes\\
 
& & (available in VASP.5.3.4 and later)\\
*The defaults for parameters controlling the damping function ({{TAG|VDW_S6}}, {{TAG|VDW_SR}}, {{TAG|VDW_D}}) are available only for the PBE functional. If a functional other than PBE is used in DFT+D2 calculation, the value of {{TAG|VDW_S6}}  (or {{TAG|VDW_SCALING}} in versions before VASP.5.3.4) must be defined in {{TAG|INCAR}}.
\end{tabular}
 
\\
*As of VASP.5.3.4, the default value for {{TAG|VDW_RADIUS}} has been increased from 30 to 50 <math>\AA</math>.
\\
 
\noindent The performance of PBE-D2 method in optimization of
*Ewald's summation in the calculation of <math>E_{disp}</math> calculation (controlled via {{TAG|LVDW_EWALD}}) is implemented according to reference <ref name="kerber"/> and is available as of VASP.5.3.4.
various crystalline systems has been tested systematically in J. Phys. Chem. A 114, 11814 (2010).\\
 
\vspace{5mm}
== Related Tags and Sections ==
\\
{{TAG|IVDW}},
\noindent IMPORTANT NOTES:
{{TAG|IALGO}}
\begin{itemize}
\item
the defaults for {\tt VDW\_C6} and {\tt VDW\_R0} are defined
only for elements in the first five rows of periodic table (i.e. H-Xe)
- if the system contains other elements the user must define these parameters in INCAR.
\item
the defaults for parameters controlling damping function ({\tt VDW\_S6}, {\tt VDW\_SR}, {\tt VDW\_D})
are available only for the PBE functional. If functional other than PBE is
used in DFT+D2 calculation, the value of {\tt VDW\_S6}  (or {\tt VDW\_SCALING} in versions before VASP.5.3.4)
must be defined in INCAR.
\item
as of VASP.5.3.4, the default value for {\tt VDW\_RADIUS} has been increased from
30 to 50 {\AA}.
\item
Ewald's summation in $E_{disp}$ calculation (controlled via {\tt LVDW\_EWALD})
implemented according to Ref.~\cite{Kerber:08}
is available as of VASP.5.3.4
\end{itemize}


== References ==
== References ==
<references>
<references>
<ref name="grimme">[http://onlinelibrary.wiley.com/doi/10.1002/jcc.20495/abstract S. Grimme., J. Comp. Chem. 27, 1787 (2006).]</ref>
<ref name="grimme">[http://onlinelibrary.wiley.com/doi/10.1002/jcc.20495/abstract S. Grimme, J. Comp. Chem. 27, 1787 (2006).]</ref>
<ref name="bucko">[http://pubs.acs.org/doi/abs/10.1021/jp106469x T. Bučko, J. Hafner, S. Lebègue and J. G. Ángyán, J. Phys. Chem. A 114, 11814 (2010).]</ref>
<ref name="kerber">[http://onlinelibrary.wiley.com/doi/10.1002/jcc.21069/abstract . Kerber and J. Sauer, J. Comp. Chem. 29, 2088 (2008). ]</ref>
</references>
</references>
----
----

Revision as of 12:35, 18 January 2017

In the D2 method of Grimme[1], the correction term takes the form:

[math]\displaystyle{ E_{\mathrm{disp}} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}} \sum_{\mathbf{L}} ^{\prime} \frac{C_{6ij}}{r_{ij,L}^{6}} f_{d,6}({r}_{ij,L}) }[/math]

where the summations are over all atoms [math]\displaystyle{ N_{at} }[/math] and all translations of the unit cell [math]\displaystyle{ {L}=(l_1,l_2,l_3) }[/math]. The prime indicates that [math]\displaystyle{ i\not=j }[/math] for [math]\displaystyle{ {L}=0 }[/math], [math]\displaystyle{ C_{6ij} }[/math] denotes the dispersion coefficient for the atom pair [math]\displaystyle{ ij }[/math], [math]\displaystyle{ {r}_{ij,L} }[/math] is the distance between atom [math]\displaystyle{ i }[/math] located in the reference cell [math]\displaystyle{ L=0 }[/math] and atom [math]\displaystyle{ j }[/math] in the cell [math]\displaystyle{ L }[/math] and the term [math]\displaystyle{ f(r_{ij}) }[/math] is a damping function whose role is to scale the force field such as to minimize the contributions from interactions within typical bonding distances. In practice, the terms in the equation for [math]\displaystyle{ E_{\mathrm{disp}} }[/math] corresponding to interactions over distances longer than a certain suitably chosen cutoff radius contribute only negligibly to [math]\displaystyle{ E_{\mathrm{disp}} }[/math] and can be ignored. Parameters [math]\displaystyle{ C_{6ij} }[/math] and [math]\displaystyle{ R_{0ij} }[/math] are computed using the following combination rules:

[math]\displaystyle{ C_{6ij} = \sqrt{C_{6ii} C_{6jj}} }[/math]

and

[math]\displaystyle{ R_{0ij} = R_{0i}+ R_{0j}. }[/math]

The values for [math]\displaystyle{ C_{6ii} }[/math] and [math]\displaystyle{ R_{0i} }[/math] are tabulated for each element and are insensitive to the particular chemical situation (for instance, [math]\displaystyle{ C_6 }[/math] for carbon in methane takes exactly the same value as that for C in benzene within this approximation). In the original method of Grimme[1], a Fermi-type damping function is used:

[math]\displaystyle{ f_{d,6}(r_{ij}) = \frac{s_6}{1+e^{-d(r_{ij}/(s_R\,R_{0ij})-1)}} }[/math]

whereby the global scaling parameter [math]\displaystyle{ s_6 }[/math] has been optimized for several different DFT functionals such as PBE ([math]\displaystyle{ s_6=0.75 }[/math]), BLYP ([math]\displaystyle{ s_6=1.2 }[/math]) and B3LYP ([math]\displaystyle{ s_6=1.05 }[/math]). The parameter [math]\displaystyle{ s_R }[/math] is usually fixed at 1.00. The DFT-D2 method can be activated by setting IVDW=1|10 or by specifying LVDW=.TRUE. (this parameter is obsolete as of VASP.5.3.3). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the default values are listed):

  • VDW_RADIUS=50.0 cutoff radius (in [math]\displaystyle{ \AA }[/math]) for pair interactions
  • VDW_S6=0.75 global scaling factor [math]\displaystyle{ s_6 }[/math] (available in VASP.5.3.4 and later)
  • VDW_SR=1.00 scaling factor [math]\displaystyle{ s_R }[/math] (available in VASP.5.3.4 and later)
  • VDW_SCALING=0.75 the same as VDW_S6 (obsolete as of VASP.5.3.4)
  • VDW_D=20.0 damping parameter [math]\displaystyle{ d }[/math]
  • VDW_C6=[real array] [math]\displaystyle{ C_6 }[/math] parameters ([math]\displaystyle{ \mathrm{Jnm}^{6}\mathrm{mol}^{-1} }[/math]) for each species defined in the POSCAR file
  • VDW_R0=[real array] [math]\displaystyle{ R_0 }[/math] parameters ([math]\displaystyle{ \AA }[/math]) for each species defined in the POSCAR file
  • LVDW_EWALD=.FALSE. decides whter lattice summation in [math]\displaystyle{ E_{disp} }[/math] expression by means of Ewald's summation is computed (available in VASP.5.3.4 and later)

The performance of PBE-D2 method in optimization of various crystalline systems has been tested systematically in reference [2].\\

noindent IMPORTANT NOTES

  • The defaults for VDW_C6 and VDW_R0 are defined only for elements in the first five rows of periodic table (i.e. H-Xe). If the system contains other elements the user must define these parameters in INCAR.
  • The defaults for parameters controlling the damping function (VDW_S6, VDW_SR, VDW_D) are available only for the PBE functional. If a functional other than PBE is used in DFT+D2 calculation, the value of VDW_S6 (or VDW_SCALING in versions before VASP.5.3.4) must be defined in INCAR.
  • As of VASP.5.3.4, the default value for VDW_RADIUS has been increased from 30 to 50 [math]\displaystyle{ \AA }[/math].
  • Ewald's summation in the calculation of [math]\displaystyle{ E_{disp} }[/math] calculation (controlled via LVDW_EWALD) is implemented according to reference [3] and is available as of VASP.5.3.4.

Related Tags and Sections

IVDW, IALGO

References


Contents